
ICEE 2012

WS #5:

Database as a CS/E Competency:

A Software Engineering Attribute

ICEE DESCRIPTION OF
WORKSHOP

Workshop facilitator: Dr. Fred Springsteel, Emeritus
Professor, Missouri University

PhD, U Washington, Seattle

Computer science and engineering majors must prove many competencies, but
can graduate without taking even one course in the design of a modern,
relational database (RDB). Then, their first job willrequire them to interface
with a large RDB of some kind; ALL important facts are kept in them.

Using a spreadsheet like Excel can be learned by the average computer user.
Not so with a relational DBMS like Oracle, or even Access. One first must
learn the relational model, and data modeling, then DB design and
somethings about DB administration. This takes at least one course.

FURTHER DESCRIPTION OF WS#5
This workshop will assemble principles from experts in software engineering

who will attest to this thesis: the biggest step in writing smart & sharable
code is imagining the data structures and their transformations via the
algorithms that are written to implement the program’s purpose, to solve a
problem in symbol manipulation, for example. This was said by the great
computer scientist Charles Simonyi (BS, UC‐Berkeley; PhD Stanford) in the
1986 book, Programmers at Work, MS Press:
Question: “Is that [data structures] the biggest step?

SIMONYI: “Absolutely that is the biggest step... For the most part the code
writes itself, but it is the data structures I maintain that are the key.”

Every CS major has to learn to use Data Structures; the smarter software
engineers, in my 35 years’ experience, take DB I to know DBMS, which in
effect are re-usable data structures. The workshop will be interactive and
involve team exercises in programming problems that were inspired by Jon
Bentley’s classic book, Programming Pearls.

PROBLEMS ARE INDEPENDENT
OF CODING LANGUAGES, OR CODE

ANY smart modern relational DBMS already
includes shared code to access the data, as it
is kept in standard relational data tables.

So if you design and build a good RDB, using a
Relational DBMS, the code is already written!

The problem is reduced to designing the right
tables that allow one to solve the problem.

The meta-problem of acceptance

ask your department's curriculum leader(s):

Q: Should we not vary the ACM/IEEE
curriculum for our major(s) to reflect the 21st
century's big changes in how people
compute?

The last 15 years have brought us
mobile devices, tablet computers, search

engines across VLDBs, universal WWW
access via wi fi social media etc etc

WHY CS HAS TO CHANGE
with the Times

Mathematics, the queen of all sciences, and
thus of engineering (applied science) needs
never to change. It is about eternal truths
and proncip

But we do: computers change to better serve
mankind, and we exist to educate people how
best to use computational devices, that is the
most efficient ways to solve their problems.
Non-reusable, non-sharable coding's defunct;

that includes 'elegant' O-O programs too

A PROBLEM from PoetRobotics
Inc.

* Design a software system - algorithms and
data structures - to find All Rhymes of a word.

GIVEN: a partly filled lookup list of basic words
often used in poems/songs; for example

WORD RHYMES

Do we need a row for every word? No;
repetitive data & searches. But, fast lookup

ld lt!

moon June, boon, croon, tune, noon, spoon, =====>

WORKSHOP EXERCISE ONE:

DESIGN the data srurctures and algorithms
needed to solve the ALL Rhymes problem
using an e-dictionary to look for the rhymes of
words.

HINT 1: you may need another table that has
all phonemes that end all common words e.g.
moon ends in -oon; June ends in -une, and in
sound, -oon = -une.

HINT 2: Equal phonemes produce same

EXERCISE DISCUSSION #1

OK, TIME TO STOP AND COMPARE NOTES;
APPOINT A SPOKESMAN FOR YOUR
GROUP TO COME UP AND EXPLAIN
YOUR TEAM'S SOLUTION, FOR FIVE
MINS. MAX.

HINT 1 WAS PURPOSELY NOT COMPLETE:
OTHER RHYMES WITH moon END IN -EWN
[hewn] OR -UGN [impugn] but, if words with
these endings are in your side DATA source or
basic dictionary, you'll find them. No googling!

Bentley's solution to Workshop
exercise one

I believe my limited solution follows the spirit of
Bentley's hints at a solution, but in my 1/E of
his 1986 book, I saw no full solution, and I
have not seen the 2/E of 2000 for this specific
problem.

A first question you guys should have
asked each other is how close to "All
Ryhmes" do we need to be? You can't prove
your solution set will find EVERY Rhyme in
English's 600,000 words!

ALL-RHYMES ALGORITHM/DATA

0. BUILD A DATA TABLE OF FINAL-
SYLLABLE PHONEMEs & WORDs as you
go;

1. ISOLATE F-S PHONEME OF INPUT
WORD; LOOK IT UP IN SIDE DATA TABLE:
moon => -oon; if no entry, create one for -
oon put all the WORDs in its rows into
RHYME table

2. EVERY ROW IT IS ON HAS A
RHYMING WORD: (-oon, soon); (-oon, boon)
etc. PUT these Words into Rhymes, keyed by

HAVE WE RE-INVENTED A
WHEEL?

IF YOU GOOGLE 'RHYME FINDER' YOU
WILL DISCOVER MANY OFFERS OF SUCH
S/W. I TRIED A FREE ONE AND IT WAS
NOT PERFECT: FOR OUR SAMPLE
WORD IT GAVE "SHOGUN" AND WHEN I
CLICKED ON THAT WORD IT WENT WAY
OFF COURSE = WE NO LONGER HAD -
oon RHYMES AT ALL!

[Tch, tch, WriteExpress!]

I GUESS IT USED A SOUNDEX OR SPELL-
ALIKE TRICK THAT GOT CONFUSED!

WORKSHOP EXERCISE TWO :
PROPERTY TAX DB PROBLEM

PROBLEM: You are given two data tables
ADDRESSES [NAME, ID#, ADDRESS]
PARCELS [ADDRESS, EVAL, 2011_TAX, 2012_TAX];

your problem is to be able to print a combined list of
[NAME, ADDRESS(es), EVALs, LAST_2_TAXES].

INFO: The 2011 levy was 30 mills (.030 x EVAL) and
the 2012 levy will be 35 mills (.035 x EVAL)

HINTS: In the ADDRESSES table, ID# is the
key but NAME is not (Paul Allen has many properties in
Seattle.)
In PARCELS, assume ADDRESS is the unique key.
FIRST DRAW ALL THE NEEDED DATA STRUCTURES!

SECONDARY HINT FOR E-R
DESIGN

1. DRAW THE E-R MODEL FOR THIS DATA

1. USE THE ERD TO MAKE A RDB THAT
HAS A THIRD TABLE TO HOLD ANSWERS

[If you calculate the 2012_TAX from the
2011_TAX, assuming the EVAL is constant, it
is slightly faster arithmetic: 2012s = 1.2 x
2011s]

